Turing, Cook, P, NP, SAT, ...

The Boolean satisfiability problem is in NP
because a non-deterministic Turing machine in polynomial time
can guess an assignment of truth values to the variables,
determine the value of the expression under that assignment,
and accept if the assignment makes the entire expression true.

Now suppose that a problem in NP is solved by the non-deterministic Turing machine
M = (Q, Σ, s, F, δ)
(where Q is the set of states,
Σ
the alphabet of tape symbols,
s
Q the initial state,
F
Q the set of accepting states,
and δ : Q × ΣQ × Σ × {−1,+1} the set of transitions)
and that M
accepts
or
rejects
an instance of the problem
in time
p
(n)
where n is the size of the instance
and p
is a
po
ly
no
mial
func
tion.
.
.
.
Me sinto em outro mundo, nesse exato momento... Devo voltar em breve...

Nao me sinto muito diferente

Nao me sinto muito diferente de vc nessa quinta feiraEstou pensando e respirando cadeia de markov. na verdade.. hidden markov models....isso eh para uma aula que tenho que preparar para amanhaahhhhhabraçaodu

o ow!

o ow!